If it's not what You are looking for type in the equation solver your own equation and let us solve it.
-16t^2+96t+2=0
a = -16; b = 96; c = +2;
Δ = b2-4ac
Δ = 962-4·(-16)·2
Δ = 9344
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{9344}=\sqrt{64*146}=\sqrt{64}*\sqrt{146}=8\sqrt{146}$$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(96)-8\sqrt{146}}{2*-16}=\frac{-96-8\sqrt{146}}{-32} $$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(96)+8\sqrt{146}}{2*-16}=\frac{-96+8\sqrt{146}}{-32} $
| 8*8.75+8y=-6 | | 4=0.4(3a+2)=-8 | | 16m^2-36=0 | | 16m^2+2=38 | | 50-15x=120 | | -6+4k^2=75 | | 50x+15=120 | | 3.1,1.1+x=4.2 | | -5+x/5=-35 | | 15x+50=120 | | .1d+.25(46-d)=6.70 | | 10x-10=-10-10 | | 1.5x+8.0=3.5 | | 31.5x+8.0=3.5 | | y+105+8y-15=180 | | y=|-7-(-6)| | | 3(n-18)-12=-9 | | 7p+7=13-6p | | 3.5=x/21000 | | x+(x2+10)+2(x2+10)=765 | | 2(s+17)-(-4)=12 | | 6x-6=6x-15 | | 3(k-13)=15 | | 9=2(y+1)+1 | | 2x=9(2–x)+4 | | 3=73500-i/21000 | | 6x+44=90 | | 4(3x-3)=13 | | 3x+22=3x+20 | | x/2x=9(2–x)+4 | | 12x+8=13x-28 | | 6x+4=13x-28 |